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Abstract
Latent class analysis is based on the assumption that within each class the observed class indicator
variables are independent of each other. We explore a new Bayesian approach that relaxes this
assumption to an assumption of approximate independence. Instead of using a correlation matrix
with correlations fixed to zero we use a correlation matrix where all correlations are estimated using
an informative prior with mean zero but non-zero variance. This more flexible approach easily
accommodates LCA model misspecifications and thus avoids spurious class formations that are
caused by the conditional independence violations. Simulation studies and real data analysis are
conducted using Mplus.
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1. Introduction

In this article we describe new modeling possibilities for Latent Class Analysis (LCA) that
are now available as a result of methodological advances in Bayesian estimation. The LCA
model has traditionally been estimated with the maximum-likelihood estimator via the EM
algorithm, see Goodman (1974). Recent advances in Bayesian estimation have made it
feasible to estimate the LCA model also within a Bayesian framework, see Elliott et. al.
(2005), and Asparouhov and Muthén (2010). In particular the approach of Asparouhov and
Muthén (2010) includes algorithms for estimating a correlation matrix within this frame-
work. Using this correlation matrix approach the LCA model can be generalized to a more
flexible model where the within class indicators are no longer required to be independent
but can be freely correlated through an underlying correlation matrix. Additional modeling
possibilities will be discussed here that arise from introducing constraints on this correla-
tion matrix. The most common ways to constraint a correlation matrix is through structural
constraints such as those that can be induced through factor analysis within each class or
simply constraining some correlation to zero while freely estimating others. However the
primary focus of this article will be a different type of constraint, a constraint that is in-
duced through using a specific prior for the correlation matrix. These constraints have been
pioneered in Muthén and Asparouhov (2011) within the framework of structural equation
models for continuous variables. The constraints are used for models that are traditionally
unidentified within the maximum-likelihood estimation framework but within the Bayesian
framework those model are identified through very restrictive priors. The idea of using such
models and priors is to find the most important model misspecifications among a vast num-
ber of such misspecifications. In this article as well we use this restrictive prior approach
to identify possible model misspecifications in the LCA framework, however, we only ap-
ply this approach to models that are truly identified even within the maximum-likelihood
framework.

Traditionally with the Bayesian estimation, the prior distributions of the model param-
eters are either informative or non-informative. Informative priors are used when there is
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indeed some kind of information already available for the parameters and non-informative
priors are used when no such information is available. In this article we use a third type of
priors. These priors are informative but are not based on specific information about the pa-
rameters but rather reflect the analyst’s belief that a certain model should approximate the
data well. Specifically in the LCA case, the analyst believes that the LCA model will ap-
proximate the data well, i.e., that the class indicators are approximately independent within
class. This can be translated as information about the within class correlation matrix. The
analyst believes that the correlation matrix should be close to a diagonal matrix. This prior
belief can be introduced in the model estimation by specifying a very restrictive prior for
correlation matrix that is centered around a diagonal matrix but does allow some wiggle
room for the correlations to be different from zero. This way in the Bayesian estimation
only those correlations that are truly non-zero, i.e., those for which the data contains ev-
idence that they are non-zero, will escape the restrictive prior, i.e., the data will override
the restrictive prior to yield a non-zero correlation. The correlations that are truly zero will
not be able to escape the restrictive prior and will be estimated to zero. We call this use
of informative prior a model based informative prior and we will discuss below how to
specify such priors. Even though we use informative priors, this methodology can be used
in practical applications where no prior information is available at all.

In this article we use a non-traditional approach to Bayesian estimation. We consider
the Bayesian estimation paired with parameter priors and a method for deriving point es-
timates and standard errors from the estimated posterior distributions simply as another
frequentist estimator. Such an estimator will be evaluated via traditional frequentist means
such as bias, mean squared error and coverage of the confidence interval in repeated ap-
plications. While traditional Bayesian application based on a specific loss function is of
interest as well in this article we only focus on Bayesian estimation as a means to construct
new frequentist estimators.

All model estimations presented in this article have been conducted with the Mplus
program version 6.11. All of the Mplus inputs and outputs presented here can be found
online at statmodel.com.

In Section 2 we describe the conditional dependence LCA models with binary indicator
variables and a general tetrachoric correlation matrix. In Section 3 we outline the Bayesian
estimation procedure for this model. In Section 4 we describe several conditional depen-
dence models within a Bayesian framework and show the role of the parameter priors in
the model definition. In Section 5 we present several simulation studies. In Section 6 we
show that if conditional dependence is ignored the LCA analysis can lead to spurious class
formations. In Section 7 we present a real data application. We conclude in Section 8.

2. LCA with conditional dependence

Let Yi, i = 1, ...,m be a binary observed variable, taking values 0 and 1, and C be a
categorical latent class variable taking values 1,...,K. The conditional independence LCA
model is given by the following equation

P (Y1, ..., Ym|C) = P (Y1|C)...P (Ym|C) =
m∏
i=1

pYi
ic (1− pic)

1−Yi (1)

where pic are parameters to be estimated as well as the parameter qi = P (C = i), i =
1, ...,K. This model can also be formulated in terms of a multivariate probit model for
underlying latent normally distributed variables Y ∗

i

Y ∗
i |C ∼ N(µic, 1) (2)
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Y ∗
i < 0 ⇔ Yi = 0 (3)

P (Yi = 0|C) = P (Y ∗
i < 0|C) = Φ(µic). (4)

As a multivariate model this can be expressed as

Y ∗|C ∼ N(µc, I) (5)

where Y ∗ = (Y ∗
1 , ..., Y

∗
m) and µc = (µ1c, ..., µmc). A natural way to introduce conditional

dependence models within LCA is to replace equation (5) with

Y ∗|C ∼ N(µc,Σc) (6)

where Σc is an unrestricted correlation matrix. The independence model of course is a
special case of the above model, i.e, it is equivalent to all off-diagonal elements Σc being
equal to 0, i.e., Σc = I . The correlations in Σc are generally known as the tetrachoric
correlations for the observed binary variables, with the exception that the above model is
within an LCA framework which means that the tetrachoric correlations are conditional on
the class variable and vary across classes. Models where only some tetrachoric correlations
in Σc are estimated, rather than the full correlation matrix, are of interest as well because
in practical applications it is very likely that only some pairs of variables show violations
of conditional independence. In addition, the above formulation can easily accommodate
general structural equation models for Y ∗

i . In particular it can easily accommodate random
effects that can be used to explain conditional dependence among the variables as in Qu et.
al. (1996). A model with one random effect for example can be expressed as

Y ∗|C = µc + Λcη + ε (7)

where η is a standard normal latent variable with mean zero and variance 1 and ε|C ∼
N(0,Θc) and Θc is a correlation matrix where some correlations can be free parameters
but typically most of the correlations will be fixed to 0, and Λc are the loading parameters
to be estimated. Random effect models can be preferable in practical applications because
the random effects explain the conditional dependence within class and may also have
substantive interpretations. One such model is the factor mixture model, see for example
Muthén (2006; 2008) and Muthén and Asparouhov (2006).

There are other ways to introduce conditional dependence in the LCA model, such as
for example the log-linear model or recursive set of logit models, however these models
are more difficult to interpret, may require many more parameters and would not naturally
accommodate random effects.

Estimating model (6) with the maximum-likelihood estimator is not an easy task be-
cause it requires the evaluation of the multivariate probit function which is not feasible for
high dimensions. We therefore use the Bayesian methods for this estimation problem. The
MCMC estimation for the conditional dependence model (6) is outlined in the following
section.

3. MCMC Estimation

In this section we describe the MCMC algorithm for estimating the conditional dependence
LCA model (6). The model contains the following sets of parameters µc, Σc, qi and the
following latent variables Y ∗

i and C. To use the Bayesian methodology we need to specify
priors for the three sets of parameters. For the parameters µc and qi we simply use the de-
fault priors available in Mplus. These priors are not the focus of our investigation. The prior
for µic is N(m0, σ0), where m0 = 0 and σ0 = 5. This prior is a weakly informative prior,
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see Gelman et al. (2008), and is chosen so that the Bayesian estimation yields estimates
close to the maximum-likelihood estimates even when the sample size is not large. Essen-
tially what this prior does however is to eliminate large negative or large positive parameters
values which are not needed. In fact even with the maximum-likelihood estimation, these
parameters are constrained typically to be within the interval [-15,15]. Beyond this interval
the µic parameter are indistinguishable as they all imply conditional probability of 0 or 1.

The prior for the parameters qi is the Dirichlet distribution D(a0, ..., a0), where a0 =
10. In this case again the prior is weakly informative. Intuitively the prior specifies that
tiny classes are not of interest, i.e., the prior prevents empty class solutions.

Finally the prior for the correlation matrix Σc is the marginal correlation distribution
of the Inverse Wishart distribution IW (Σ0c, d), i.e., to construct this prior the distribution
IW (Σ0c, d) is used to construct variance covariance matrices which are then reduced to
correlation matrices. This prior has no explicit formulation, however, it is a conjugate prior
for the PX - algorithm implemented in Mplus for the estimation of the correlation matrix,
see Asparouhov and Muthén (2010).

The MCMC algorithm is based on the Gibbs sampler, see Gelman et al. (2004), and it
uses the following 5 step generation process

[µ|Y ∗,Σ, Y, C, q] ∼ [µ|Y ∗,Σ, C] (8)

[Σ|Y ∗, µ, Y, C, q] ∼ [Σ|Y ∗, µ, C] (9)

[C|µ,Σ, Y ∗, Y, q] ∼ [C|µ,Σ, Y ∗, q] (10)

[q|µ,Σ, Y ∗, Y, C] ∼ [q|C] (11)

[Y ∗|µ,Σ, Y, C, q] ∼ [Y ∗|µ,Σ, Y, C] (12)

Steps (8) and (9) are performed separately for each class.
The posterior distribution in (8) is given by

[µc|Y ∗,Σ, C] ∼ N(Dd,D) (13)

where

D =

(
ncΣ

−1
c +Σ−1

0c

)−1

(14)

d = ncΣ
−1
c Ȳ ∗

c +Σ−1
0 m0 (15)

where Σ0c is the prior variance matrix of µc, which in our case is a diagonal matrix with
5 for all the diagonal entries, m0c is the prior mean of µc, which in our case is a vector of
zeros, nc is the number of observations classified in class c and Ȳ ∗

c is the sample mean of
Y ∗ in class c.

The posterior distribution in (9) is sampled through the PX-algorithm, see van Dyk and
Meng (2001) for example. We extend the correlation matrix parameter space to the variance
covariance parameter space. Because the observed data is categorical we know that the
diagonal entries of Σc are not really identified, nevertheless these parameters become a
part of the Bayesian estimation. The only information available for these parameters is in
the prior, i.e., the posterior distribution for these parameters is the same as the prior. We
need these parameters to be able to use conjugate priors. If the prior for Σc is IW (Σ0c, fc)
then the posterior for Σc is

IW (Ec +Σ0c, nc + fc) (16)

where Ec =
∑
(Y ∗ − µc)

T (Y ∗ − µc) and the sum is taken over all observations classified
in class c.
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The posterior distribution in (10) is given by

P (C = j|µ,Σ, Y ∗, q) =
qjf(µj ,Σj , Y

∗)∑
j qjf(µj ,Σj , Y ∗)

(17)

where f(µj ,Σj , Y
∗) is the multivariate normal density function

(2π)−m/2|Σj |−1/2Exp(−(Y ∗ − µj)
TΣ−1

j (Y ∗ − µj)/2) (18)

The posterior distribution in (11) is the Dirichlet distribution

D(a0 + n1, ..., a0 + nK). (19)

The fifth step in the Gibbs sampler given in (12) actually decomposes in additional
m steps because we update one Y ∗

j conditional on all other Y ∗ variables. The m Gibbs
sampler steps are described as follows

[Y ∗
1 |C, µ,Σ, Y1, Y ∗

j , j ̸= 1] (20)

[Y ∗
2 |C, µ,Σ, Y2, Y ∗

j , j ̸= 2] (21)

· · ·

[Y ∗
m|C, µ,Σ, Ym, Y ∗

j , j ̸= m] (22)

Because
[Y ∗ |C] ∼ N(µc,Σc) (23)

we get that for i = 1, ...,m

[Y ∗
i |C, µ,Σ, Y ∗

j , j ̸= i] ∼ N(αci +
∑
j ̸=i

βcijY
∗
j , σci). (24)

When we condition further on the observed value of Yi we get that the needed posterior dis-
tribution is simply the distribution given in (24) truncated above zero if Yi = 1 or truncated
below zero if Yi = 0.

Note here that when Σ = I , i.e., the estimated model is actually the conditional inde-
pendence LCA model, a more efficient MCMC algorithm exist, which is also implemented
in Mplus 6.11, and that algorithm generates the latent variables C and Y ∗ together, i.e.,
steps 3 and 5 are combined in one step

[C, Y ∗|µ, Y ∗, Y, q] ∼ [C|µ, Y, q][Y ∗|µ, Y, C]. (25)

Both distributions on the LHS of (25) are easily derived. The fewer blocks the Gibbs
sampler has the more efficient the estimation is, as it avoids high correlations between
parameters from different blocks that can produce slow mixing.

Note also that the above algorithm does not easily extend to models for ordered polyto-
mous observed variables. This is because ordered polytomous variable will use 2 or more
threshold parameters that cannot be converted to means of Y ∗ parameters as in the binary
case.

In this paper we will not discuss the issue of label switching, which has been a difficult
problem to tackle in the past. However, recent methodological advances have largely re-
solved this problem. There are a number of different solutions available. The two simplest
ones are perhaps to fix a certain number of observations to particular classes, or to introduce
inequality constraints among the parameters which identify the classes uniquely. In Mplus
the second approach is implemented. However, in our simulation studies we used large
sample sizes, and at such sample size levels, label switching does not occur or it occurs
very rarely. Thus we will not discuss further the issue of label switching.
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4. Bayes conditional dependence LCA models and the role of the prior in model
definition

Here we define several different conditional dependence models and show that by selecting
different priors for the correlation matrix we essentially construct different models. The
general non-independence model is given by (6) where Σc is an unrestricted tetrachoric
correlation matrix. The prior distribution for Σc is the marginal correlation distribution of
IW (Σ0c, fc). By varying this prior we can construct different models.

Model 1: Unrestricted LCA.
For this model we estimate an unrestricted correlation matrix Σc using as a prior the
marginal correlation distribution of IW (I,m + 1), where I is the identity matrix and m
is the number of class indicators. This prior can be considered uninformative because the
marginal distribution of the correlation parameters is the uniform prior on the interval [-
1,1]. This prior is the default prior in Mplus.

Note that the unrestricted LCA is an identifiable model even if we use the maximum-
likelihood estimator. To see this note that the latent classes are determined primarily by
the mean parameters µc. If the classes are sufficiently well separated, then estimating the
tetrachoric correlations within each class amounts to estimating the tetrachoric correlations
in a multiple group analysis. We can also verify that the model is identifiable by computing
the total number of parameters in the model and the degrees of freedom. For example,
for a 2 class model with m binary variable we have 2m − 1 degrees of freedom while the
unrestricted LCA model has m2+m+1 parameter. Since 2m−1 ≥ m2+m+1 ⇔ m ≥ 5
we conclude that the unrestricted 2-class LCA model can be estimated even with only 5
indicators.

Model 2: Partial correlation LCA.
For this model we estimate only some of the tetrachoric correlation parameter in Σc with
prior set to the marginal correlation distribution of IW (I,mj + 1), where I is the identity
matrix and mj is the size of the identity matrix, i.e., the size of the block of free tetrachoric
correlation parameters. This prior is again the default prior in Mplus and can also be con-
sidered uninformative because the resulting marginal distributions are again the uniform
priors on the interval [-1,1]. The estimated partial correlation matrix should be a block di-
agonal partial correlation matrix, i.e., there are certain restrictions of this correlation matrix
that need to be satisfied. Those restrictions are imposed by the MCMC estimation described
in the previous section. Essentially the restrictions imply that if we estimate the tetrachoric
correlation between Y1 and Y2 and the tetrachoric correlation between Y2 and Y3 we have
to also estimate the tetrachoric correlation between Y1 and Y3 to make a full diagonal block
in the tetrachoric correlation matrix Σc.

Model 3: Exploratory LCA.
For this model we estimate an unrestricted correlation matrix Σc with prior set to the
marginal correlation distribution of IW (I, f), where I is the identity matrix and f > m+1.
This prior is informative. The value of f changes the model and the level of informativeness
of the prior. By increasing the parameter f the prior forces more independence between the
indicators variable and decreasing the parameter f results in a model that allows more de-
pendence between the indicators. The marginal distribution for all correlations, see Barnard
et. al. (2000), is the symmetric Beta distribution B((f −m+1)/2, (f −m+1)/2) on the
interval [-1,1] with mean 0 and variance

1

f −m+ 2
. (26)

The above variance formula can be used to make a proper choice for the parameter f . For
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example, if we want the prior for the correlation parameters to have a variance of 0.01 and
a standard deviation of 0.1 then f should be 98 +m.

The Exploratory LCA (ELCA) model formalizes the belief that within class the inde-
pendence of the indicator variables is only approximate , i.e., the conditional independence
is only approximate and that violations of that independence are possible. Nevertheless our
prior belief is that conditional independence should hold to a large extent and the parameter
f allows us to control to what extent we want to force independence between the indicator
variables. In fact if we set f = ∞ we specify a model where all tetrachoric correlations
are fixed to 0, i.e., the model is the standard conditional independence LCA model. Thus
the ELCA model provides a bridge between the unrestricted LCA model (f = m + 1)
and the conditional independence LCA model (f = ∞), i.e., it is the compromise between
these two models. One can also interpret the standard conditional independence LCA as an
ELCA model with super strong priors for the tetrachoric correlations, i.e., priors with zero
variance.

In practical applications different values of f should be explored within a standard
sensitivity analysis.

The ELCA model provides a valuable alternative to the unrestricted LCA model, which
may be too flexible in some practical situations and thus the ELCA may be much easier to
estimate. In principle, as we increase the parameter f , the convergence rates, the quality of
the mixing of the MCMC chains, and the variability of the estimates for the ELCA model
should approach those for the standard conditional independence LCA model.

Also the ELCA model has a distinct advantage over the partial correlation LCA model
because it does not require prior knowledge about what tetrachoric correlations should be
included in the model. Instead the ELCA model allows the tetrachoric correlations that
are not zero to escape the narrow informative priors centered at zero and thus provides a
method for automatically detecting the tetrachoric correlations that should be estimated.

The ELCA model can be used as a final model or it can be used as an exploratory model
followed up by a partial correlation LCA model. Based on a preliminary ELCA estimation,
the largest few tetrachoric correlations (or simply those that are significant) are selected
and then those correlations are estimated in the partial correlation LCA model. Such a two
stage approach would yield a more parsimonious model that has all the advantages of the
ELCA model. Alternatively the ELCA model can be followed up with a random effect
model or a combination of a random effect model and a partial correlation model yielding
again a more parsimonious model.

In some situations it may be beneficial to use a prior IW (Σc, f) where Σc is not the
identity matrix, even when there is truly no prior information for the tetrachoric correla-
tions. For example, consider an ELCA estimation with prior IW (I,m + 99) that yields
a tetrachoric correlation value of 0.5. Such a value is out of the plausible range for the
marginal prior B(50, 50). We can safely conclude in such a situation that the information
in the data contradicts the IW (I,m + 99) prior and that a different prior centered around
0.5 for that particular correlation would yield much more appropriate estimation.

5. Simulation Studies

In this section we present various simulation studies that illustrate the Bayesian estimation
and the various conditional dependence LCA models. In all of the simulations below we
use 100 replications, i.e., we generate 100 data sets and conduct the Bayesian estimation
for each of these data sets.
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Table 1: Convergence rates for 2 class unrestricted LCA model with m = 10 binary items

Sample Size 200 500 1000 2000 5000
µ = 1 31% 65% 100% 100% 100%
µ = 1.5 90% 98% 97% 94% 100%

5.1 Simulation study for the unrestricted LCA model

We generate data from a 2-class LCA model with both classes of equal size, 10 binary
indicators, and the parameters µc are all equal within class and opposite in sign across
class, i.e., µ1i = µ and µ2i = −µ. The larger the value of µ the better the separation
between the two classes. We generate the data using a tetrachoric correlation matrix in
class one that has 3 non-zero values σ1,12 = σ1,39 = σ1,57 = 0.2, where σi, jk is the
correlation between Y ∗

j and Y ∗
k in class i. The tetrachoric correlation matrix in class two

has 1 non-zero value σ2,46 = 0.5. In this simulation study we evaluate the convergence
rates of the Bayesian estimator of the unrestricted LCA model. We vary the sample size
n, using 5 different sample size values: 200, 500, 1000, 2000 and 5000. We also vary the
level of class separation using µ = 1 and µ = 1.5 which means that the class septation is 2
or 3 standard deviation units. This is a reasonable level of class separation, see Lubke and
Muthén (2007). The results are presented in Table 1. It is clear that the unrestricted LCA
model will be difficult to estimate unless the sample size is large or the class separation
is good. In Table 2 we also present the results of the simulation study for n = 1000 and
µ = 1. Only some of the model parameters are included in this table to simplify the
presentation. We see that the parameters estimates have no bias and that coverage rates
are near the nominal 95%. Thus we conclude that the estimation of the unrestricted LCA
model is feasible as long as the sample size is not too small and the classes are not poorly
separated. It is worth noting that the positive tetrachoric correlations were not significant
in all the replications even at a sample size of n = 1000. In fact, the correlations with
true value of 0.2 were significant approximately in half of the replications. Therefore even
when a correlation is estimated to a positive value there may not be enough power in the
data to establish significance for that correlation. Thus a tetrachoric correlation that is
not significant should not be automatically discounted as being 0. Instead the size of the
correlation should also be taken into account.

Note also that when the values of µ increase the identifiability of the tetrachoric corre-
lations is reduced. If in one of the classes the value of µci is large by absolute value then
the indicator variable Yi will be close to constant and thus any correlation between that
variable and another variable will be difficult to identify.

5.2 Simulation study for the ELCA model

In this section we generate the data as in the previous section and estimate the ELCA model
where the prior for Σc is set to be the marginal correlation distribution of IW (I, 15), i.e.,
all tetrachoric correlations have a marginal beta prior B(3, 3) with mean 0 and variance
1/7. We estimate the model for various sample sizes and class separations. For the ELCA
the convergence rate is 100% in all cases presented in Table 1. Thus we conclude that
the ELCA model is easier to estimate than the unrestricted LCA model, i.e., even a slight
increase in the second parameter, i.e. the degrees of freedom parameter, of the Inverse
Wishart prior can improve the convergence rate. In this example the convergence rate
improved by increasing the degrees of freedom parameter from 11 for the unrestricted LCA
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Table 2: Unrestricted LCA model with 2 classes, m = 10 binary items, n = 1000 and
µ = 1

True Average
Parameter Value Estimate Coverage Significant

σ1,12 0.20 0.20 93% 51%
σ1,13 0.00 0.01 89% 11%
σ1,38 0.00 0.00 93% 7%
σ1,39 0.20 0.21 96% 45%
σ1,56 0.00 0.03 91% 9%
σ1,57 0.20 0.21 93% 60%
µ1,1 1.00 0.99 94% 100%
σ2,45 0.00 0.00 96% 4%
σ2,46 0.50 0.51 97% 100%
µ2,1 -1.00 -1.00 96% 100%

to 15 for the ELCA.
In Table 3 we present the results of the simulation study for n = 1000 and µ = 1. These

results correspond to those presented in Table 2 for the unrestricted LCA model. We see that
the parameters estimates have small bias for those tetrachoric correlations that are positive,
which also results in reduced coverage as well as reduced power to detect significance.
This is of course the result of the informative prior that pushes all tetrachoric correlations
towards 0. Nevertheless the positive correlations were singled out, i.e., detected by the
ELCA analysis and the zero tetrachoric correlations were estimated correctly to zero.

One way to resolve the small biases of the ELCA for the positive tetrachoric correla-
tions is to adjust the prior so that it is centered around the estimated positive value, i.e., as
a bias reduction technique one can use the following approach. First estimate the ELCA
model with IW (I, f) then select the largest few correlations and estimate a second ELCA
model where the prior is IW (Σ0c, f) and Σ0c is chosen so that the prior mean values are
those positive values found in the first ELCA model. In our example Σ0c includes the 3
positive correlations in class one and the 1 positive correlation in class two. In Table 4
we present the results of such a two-stage approach. The convergence rates for this two
stage approach are also 100% in all cases and the biases are reduced dramatically and the
reduction in coverage and power are eliminated as well.

An alternative follow-up analysis to eliminate the biases in ELCA is to simply esti-
mate the partial correlation LCA model where only the 3 positive correlations in class one
and the 1 positive correlation in class two are estimated. All priors for the tetrachoric cor-
relations are uniform on [-1,1], i.e., uninformative priors. The convergence rates for this
analysis is again 100%. The results are presented in Table 5. In this follow-up approach the
biases are eliminated and the coverage is near the nominal 95% level. Using the partial cor-
relation LCA as a follow up analysis is preferable because it does not require incremental
adjustments to the priors. This analysis simply uses uninformative priors for the estimated
correlations.

Another possible follow-up analysis to the ELCA model is an ML estimation for an
LCA model with random effects. Once the non-zero tetrachoric correlations in the LCA
analysis have been identified by the ELCA analysis one can construct an LCA model with
one random effect for each positive correlation and estimated that model with the ML esti-
mator. Note however that the ML estimator uses numerical integration and the dimensions
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Table 3: ELCA model with 2 classes, m = 10 binary items, n = 1000, µ = 1, and prior
IW (I, 15)

True Average
Parameter Value Estimate Coverage Significant

σ1,12 0.20 0.15 95% 38%
σ1,13 0.00 0.01 94% 6%
σ1,38 0.00 0.00 99% 1%
σ1,39 0.20 0.15 96% 35%
σ1,56 0.00 0.01 97% 3%
σ1,57 0.20 0.16 98% 44%
µ1,1 1.00 1.00 92% 100%
σ2,45 0.00 0.00 99% 1%
σ2,46 0.50 0.39 72% 100%
µ2,1 -1.00 -1.00 96% 100%

Table 4: Two-stage ELCA model with 2 classes, m = 10 binary items, n = 1000, µ = 1
and prior IW (Σ0c, 15)

True Average
Parameter Value Estimate Coverage Significant

σ1,12 0.20 0.18 96% 56%
σ1,13 0.00 0.01 94% 6%
σ1,38 0.00 0.00 100% 0%
σ1,39 0.20 0.18 100% 48%
σ1,56 0.00 0.01 98% 2%
σ1,57 0.20 0.19 98% 57%
µ1,1 1.00 1.00 93% 100%
σ2,45 0.00 0.01 99% 1%
σ2,46 0.50 0.48 100% 100%
µ2,1 -1.00 -1.00 97% 100%
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Table 5: ELCA follow-up by partial correlation LCA model with 2 classes, m = 10 binary
items, n = 1000, µ = 1 and uninformative priors

True Average
Parameter Value Estimate Coverage Significant

σ1,12 0.20 0.19 94% 48%
σ1,39 0.20 0.20 96% 51%
σ1,57 0.20 0.19 95% 46%
µ1,1 1.00 1.01 92% 100%
σ2,46 0.50 0.50 97% 100%
µ2,1 -1.00 -1.00 95% 100%

of the numerical integration is the number of random effects. Thus in practical applica-
tions not more than 3 or 4 random effects can be included in the model. Note also that the
number of random effects is the maximum number of tetrachoric correlations within a class
that will be included in the model rather than the total number of tetrachoric correlations.
In our example with 3 tetrachoric correlations is class one and 1 in class two one would
need 3 random effects rater than 4 as the loadings can be redefined between the classes.
Nevertheless, the random effect LCA model estimated with the ML estimator is clearly
limited to the number of tetrachoric correlations that can estimate. This limitation of the
ML estimator is one of the clear advantages of the Bayesian methodology and the ELCA
model which can accommodate any number of tetrachoric correlations.

6. Consequences of ignoring the conditional dependence

It is important to understand what the consequences are from ignoring the conditional de-
pendence within class. In this section we demonstrate one such potential problem with a
simple simulation study. If the conditional dependence is ignored in an LCA model we
could conclude that there are more classes than the true number of classes. Very often in
practical applications the analysis seems to find more classes than we can substantively
interpret. Thus being able to easily accommodate conditional dependence within class to
avoid spurious class formation becomes very important from a practical perspective.

Consider a two class LCA model as in Section 5.2 but only with 6 binary indicator
variables and only one non-zero tetrachoric correlation, the correlation between the first
two indicators in class one is σ1,12 = 0.8. We generate a data set of size n = 5000
using µ1i = 1 and µ2i = −1, for i = 1, ..., 6. The two classes are of equal size. One
of the most popular methods for selecting the number of classes is to estimate the LCA
model with several different classes and select the model with the smallest BIC value, see
Nylund et. al. (2007). More precisely we estimate the LCA model with different number
of classes and as we increase the number of classes the BIC values typically first decrease
and then increase. After the increase of BIC occurs we select the model with the smallest
BIC. Table 6 shows the BIC values for the conditional independence LCA model and the
conditional dependence LCA model for different number of classes. All these models
are estimated with the maximum-likelihood estimation. If the LCA analysis is restricted
to conditional independence models only we will conclude that there are 3 classes. If
however the conditional dependence is included in the model through a random effect then
we conclude the correct number of classes is indeed 2.

Another problem that occurs when the conditional dependence is ignored is that even
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Table 6: Deciding on the number of classes using conditional independence LCA and
conditional dependence LCA

Number of Classes Assumption BIC
2 independence 32301
3 independence 31893
4 independence 31945
2 correlation 31858
3 correlation 31901

when the correct number of classes is analyzed the class formation is incorrect, i.e., the
true latent classes are not correctly discovered and many observations are misclassified. To
illustrate this problem we generate data just as in the previous example but the two classes
are not of equal size. The first class contains 88.1% of the population while the second
class contains 11.9% of the population. We then analyze the data using a two class LCA
model where the conditional dependence is accounted for and when it is ignored. When
the conditional dependence is included in the model the small class is estimated to have
12.6% of the population which is sufficiently close to the true value and we conclude that
the classes are correctly identified. When the conditional dependence is ignored the small
class is estimated to have 21.5% of the population and we conclude that the true latent
classes were misconstrued. The estimates of the mean parameters µ are also biased when
the the conditional dependence is ignored.

There may be other problems that are caused by ignoring the conditional dependence.
For example, very often in practical applications too many multiple solutions are found that
cannot be easily distinguished and the best solution may even be omitted due to insufficient
optimization search of the log-likelihood function. These additional problems are only
hypothesized however and additional research should be conducted in this direction.

7. The Qu, Tan and Kutner example

In this section we test this new Bayesian methodology with the real data example presented
in Qu et. al. (1996). Four diagnostic binary tests are analyzed with a 2-class LCA model.
In the Qu et. al. (1996) article the authors determined that the conditional dependence
is not satisfied and that a model with a random effect that correlates the second and the
third variable in class two provides a good fit for the data. We reach the same conclusion
when we analyze the data with a 2-class ELCA model using a prior for the tetrachoric
correlation matrix the marginal correlation distribution of IW (I, 15). The results from the
2-class ELCA model estimation are presented in Table 7. If we look at the size of the
correlation estimates one parameter stand out σ2,23. If we look at the significance level, the
same parameter stands out. In fact σ2,23 is the only significant correlation parameter in the
analysis. Thus ELCA analysis confirms the findings of Qu, Tan and Kutner (1996). Note
that this model is actually not an identifiable model. The ELCA model has 21 parameters
but there are only 15 degrees of freedom. Nevertheless the correct tetrachoric correlation
was found.

We also conduct a follow up analysis using the partial correlation LCA model where
only the σ2,23 correlation is estimated and the rest of the correlations are fixed to 0. We
compare the results of this Bayesian estimation with the ML estimates in Table 8. The
results are presented on probability scale. The estimated parameters are pij = P (Yi =
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Table 7: ELCA analysis for the 2-class Qu, Tan and Kutner example

Parameter Estimate One-sided P-value 95% confidence interval
σ1,12 0.14 0.24 [-0.22,0.49]
σ1,13 0.00 0.50 [-0.42,0.42]
σ1,14 -0.02 0.47 [-0.46,0.38]
σ1,23 -0.01 0.49 [-0.42,0.42]
σ1,24 -0.11 0.30 [-0.48,0.28]
σ1,34 0.00 0.49 [-0.41,0.41]
σ2,12 0.01 0.49 [-0.44,0.43]
σ2,13 0.00 0.50 [-0.42,0.43]
σ2,14 -0.02 0.47 [-0.39,0.40]
σ2,23 0.35 0.00 [0.13,0.55]
σ2,24 0.01 0.48 [-0.41,0.42]
σ2,34 0.01 0.49 [-0.41,0.42]

Table 8: Comparing ML and Bayes estimates on the Qu, Tan and Kutner example

Parameter Bayes Estimate ML Estimate
p11 0.97 0.97
p21 0.97 0.96
p31 1.00 1.00
p41 0.92 0.92
p12 0.00 0.00
p22 0.43 0.43
p32 0.09 0.09
p42 0.00 0.00
σ2,23 0.54 0.52

0|C = j). The ML and the Bayes estimates are nearly identical.

8. Conclusions

In this article we demonstrate that with the recent development in Bayesian estimation
more flexible LCA models can now be easily estimated to accommodate violations of the
conditional independence assumption. In particular the full tetrachoric correlation matrix
can be estimated within each class.

We also demonstrate that the ELCA model can easily and automatically discover all
conditional independence violations in an LCA model. Alternatively the ELCA model
can be used to simply estimate a general tetrachoric correlation matrix that can be used to
discover and construct latent factors which explain the correlations. The ELCA model also
has the virtue that it yields a more stable estimation than a completely unrestricted LCA
model.

The Bayesian estimator, unlike the ML estimator, can accommodate any number of
tetrachoric correlations in the model. The ML estimator would generally be limited to 3
or 4 tetrachoric correlations. Allowing the tetrachoric correlations in the model we can
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avoid spurious class modeling and obtain LCA models that fit the data better, have fewer
classes and are more connected to substantive hypothesis. None of the Bayesian methods
and models discussed in this article are computationally intensive. In fact they take less
than a minute to estimate in Mplus version 6.11.

The Bayesian methodology allows us to introduce a new concept in statistical modeling.
With the maximum-likelihood estimation or any other frequentist estimator a parameter can
either be free or fixed. With the Bayesian methodology a parameter can be in between a
fixed and a free parameter, i.e., it is a hybrid parameter that is free only if the information in
the data requires that parameter to be free. This concept is based on allowing informative
priors for the hybrid parameters. A hybrid parameter is a parameter that is free but because
it has a strong prior information it can only vary slightly within the wiggle room of the
prior.

We also demonstrate in this article a new possibility to build structural models. With
frequentist methods if we want to structure for example a variance covariance matrix to
obtain a more parsimonious model we can either fix covariance parameters to 0, introduce
constraints between the parameters in the matrix, or introduce latent factors that explain
the covariances. With the Bayesian methodology we can provide structural restrictions on
a model by introducing informative priors, i.e., by using hybrid parameters and providing
parameter constraints through informative priors.

Further methodological advances are needed however. Posterior predictive checking
is needed to evaluate model fit for the conditional dependence LCA models. Methods
for comparing the different conditional dependence LCA models are also needed. The
methodology described in this article can be used only with binary variables but not for
ordered polytomous variables. A different estimation algorithm is needed to accommodate
ordered polytomous variables. Further research is also needed to understand the impact of
ignoring the conditional dependence.
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